AP Calculus BC - McGlone Section 10.6 - Polar Area Multiple Curves

Find the indicated information. Some can be set up without your calculator. Integrate with your calculator.

- 1. For the polar curves $r = 3\cos\theta$ and $r = 2 \cos\theta$:
 - a. Find the values of θ where the curves intersect (no calculator.)
 - b. Find the area inside the circle but outside the limaçon.
 - c. Find the area shared by the curves.

- 2. For the polar curves $r = 3\cos\theta$ and $r = 2 2\cos\theta$:
 - a. Find the values of θ where the curves intersect (calculator.)
 - b. Find the area shared by the curves.
 - c. Find the area outside the circle but inside the cardioid in QI.

- 3. For the polar curves $r = 4sin\theta$ and r = 2:
 - a. Find the values of θ where the curves intersect (no calculator.)
 - b. Find the area shared by the curves.
 - c. Find the area inside $r=4sin\theta$ but outside r=2 with a single integral expression.

- 4. For the polar curves $r = 4\sin(2\theta)$ and r = 2:
 - a. Find the values of θ where the curves interest in QI only (calculator.)
 - b. Find the area outside of the circle but inside the rose in ${\sf QI}.$
 - c. Find the area shared by the curves in QI only without using subtraction.

AP Calculus BC - McGlone Section 10.6 - Polar Area Multiple Curves

Find the indicated information. Some can be set up without your calculator. Integrate with your calculator.

- 1. For the polar curves $r = 3\cos\theta$ and $r = 2 \cos\theta$:
 - a. Find the values of θ where the curves intersect (no calculator.)
 - b. Find the area inside the circle but outside the limaçon.
 - c. Find the area shared by the curves.

a)
$$3\cos\theta = 2 - \cos\theta$$
 b) $2 \cdot \frac{1}{2} \int_{0}^{\pi/3} (3\cos\theta)^{2} - (2 - \cos\theta)^{2} d\theta$
 $4\cos\theta = 2$ = 5.196

$$\Theta_1 = \pi 73$$

$$\Theta_2 = -\pi 73$$

c)
$$2 \cdot \frac{1}{3} \int_{0}^{3} (2 - \cos \theta)^{2} d\theta + 2 \cdot \frac{1}{3} \int_{0}^{3} (3 \cos \theta)^{2} d\theta$$

= 1.872

- 2. For the polar curves $r_1 = 3\cos\theta$ and $r_2 = 2 2\cos\theta$:
 - a. Find the values of θ where the curves intersect (calculator.)
 - b. Find the area shared by the curves.
 - c. Find the area outside the circle but inside the cardioid in QI.

a)
$$3\omega s\theta = 2-2\omega s\theta$$

 $5\omega s\theta = 2$
 $0s\theta = 45$
 $\theta \approx 1.159 = 8$

c)
$$\frac{1}{2} \int_{B}^{\pi} (2-2\omega s\theta)^{2} - (3\omega s\theta)^{2} d\theta = .4329...$$

- 3. For the polar curves $r = 4sin\theta$ and r = 2:
 - a. Find the values of θ where the curves intersect (no calculator.)
 - b. Find the area shared by the curves.
 - c. Find the area inside $r=4sin\theta$ but outside r=2 with a single integral expression.

c)
$$2 \cdot \frac{1}{2} \int_{\pi_{10}}^{\pi_{2}} (4 \sin \theta)^{2} - a^{2} d\theta = 7,6528$$

- 4. For the polar curves $r = 4 \sin(2\theta)$ and r = 2:
 - a. Find the values of θ where the curves interest in QI only (calculator.)
 - b. Find the area outside of the circle but inside the rose in QI.
 - c. Find the area shared by the curves in QI only without using subtraction.

a)
$$4 \sin 2\theta = 2$$

 $\sin 2\theta = 1/2$
 $2\theta = 1/2$
 $\theta = 1/12 \approx .2617 = 1/2$
b) $\frac{1}{2} \int_{0}^{\pi/12} (4 \sin (2\theta))^{2} + \frac{1}{2} \int_{0}^{\pi/12} 2^{2} d\theta = 2.4567 \cdots$
c) $\frac{1}{2} \int_{0}^{\pi/12} (4 \sin 2\theta)^{2} + \frac{1}{2} \int_{0}^{\pi/12} 2^{2} d\theta = 2.4567 \cdots$